Spatially Multiplexed Single-Molecule Translocations Through a Nanopore at Controlled Speeds

Nature Nanotechnology(2023)

引用 5|浏览3
暂无评分
摘要
In current nanopore-based label-free single-molecule sensing technologies, stochastic processes influence the selection of translocating molecule, translocation rate and translocation velocity. As a result, single-molecule translocations are challenging to control both spatially and temporally. Here we present a method using a glass nanopore mounted on a three-dimensional nanopositioner to spatially select molecules, deterministically tethered on a glass surface, for controlled translocations. By controlling the distance between the nanopore and glass surface, we can actively select the region of interest on the molecule and scan it a controlled number of times and at a controlled velocity. Decreasing the velocity and averaging thousands of consecutive readings of the same molecule increases the signal-to-noise ratio by two orders of magnitude compared with free translocations. We demonstrate the method’s versatility by assessing DNA–protein complexes, DNA rulers and DNA gaps, achieving down to single-nucleotide gap detection.
更多
查看译文
关键词
Single-Molecule Sensing,Nanoparticles,Nanopores
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要