谷歌浏览器插件
订阅小程序
在清言上使用

Nanomechanics of Negatively Supercoiled Diaminopurine-Substituted DNA

Biophysical Journal(2022)

引用 2|浏览30
暂无评分
摘要
Single molecule experiments have demonstrated a progressive transition from a B- to an L-form helix as DNA is gently stretched and progressively unwound. The particular sequence of a DNA segment defines both base stacking and hydrogen bonding that affect the partitioning and conformations of the two phases. Naturally or artificially modified bases alter H-bonds and base stacking and DNA with diaminopurine (DAP) replacing adenine was synthesized to produce linear fragments with triply hydrogen-bonded DAP:T base pairs. Both unmodified and DAP-substituted DNA transitioned from a B- to an L-helix under physiological conditions of mild tension and unwinding. This transition avoids writhing and the ease of this transition may prevent cumbersome topological rearrangements in genomic DNA that would require topoisomerase activity to resolve. L-DNA displayed about tenfold lower persistence length than B-DNA. However, left-handed DAP-substituted DNA was twice as stiff as unmodified L-DNA. Unmodified DNA and DAP-substituted DNA have very distinct mechanical characteristics at physiological levels of negative supercoiling and tension.
更多
查看译文
关键词
DNA Structure,Conductance Switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要