谷歌浏览器插件
订阅小程序
在清言上使用

Schizophrenia Risk Mapping and Functional Engineering of the 3D Genome in Three Neuronal Subtypes.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览9
暂无评分
摘要
Common variants associated with schizophrenia are concentrated in non-coding regulatory sequences, but their precise target genes are context-dependent and impacted by cell-type-specific three-dimensional spatial chromatin organization. Here, we map long-range chromosomal conformations in isogenic human dopaminergic, GABAergic, and glutamatergic neurons to track developmentally programmed shifts in the regulatory activity of schizophrenia risk loci. Massive repressive compartmentalization, concomitant with the emergence of hundreds of neuron-specific multi-valent chromatin architectural stripes, occurs during neuronal differentiation, with genes interconnected to genetic risk loci through these long-range chromatin structures differing in their biological roles from genes more proximal to sequences conferring heritable risk. Chemically induced CRISPR-guided chromosomal loop-engineering for the proximal risk gene SNAP91 and distal risk gene BHLHE22 profoundly alters synaptic development and functional activity. Our findings highlight the large-scale cell-type-specific reorganization of chromosomal conformations at schizophrenia risk loci during neurodevelopment and establish a causal link between risk-associated gene-regulatory loop structures and neuronal function.
更多
查看译文
关键词
3d genome,schizophrenia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要