谷歌浏览器插件
订阅小程序
在清言上使用

Tuning the Electronic and Thermoelectric Properties of Selenium Monolayers Through Atomic Impurities: A DFT Study

Solid state communications(2023)

引用 2|浏览3
暂无评分
摘要
The structural, electronic, and thermoelectric properties of selenium monolayer with impurity adsorption and substitutional atoms have been studied using density functional theory (DFT) combined with semiclassical Boltzmann theory. The adsorption energy of the impurity adatoms in their stable position ranged from −1.46 eV for Te to −4 .44 eV for Pt. Regarding the atomic substitution, Pt impurities exhibited the highest stability in the intermediate position, with a formation energy of −150.5 meV, followed by Sn with a formation energy of −90.40 meV. We further investigated the impact of atomic impurities on the electronic properties of the material and found that the bandgap energy was significantly reduced, resulting in a semiconductor-to-metal transition. These results highlight the effectiveness of defect engineering for electronic band tuning. Furthermore, we discovered that a selenium monolayer with substitution of an Sn or Te atom in the intermediate layer exhibits a maximum value of the dimensionless figure of merit (including electronic and phononic contributions) of 0.51 and 0.52, respectively, while the clean selenium monolayer has a maximum value of ZT=0.43. These finding suggest that selenium monolayer with Sn defects could be a promising thermoelectric materials that offer an alternative for recovering waste heat and transforming it into electricity.
更多
查看译文
关键词
Density functional theory,Two-dimensional materials,Figure of merit,Thermoelectric properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要