谷歌浏览器插件
订阅小程序
在清言上使用

#326 : Multi-Omics Analysis Reveals Translational Landscapes and Regulations in Mouse and Human Oocyte Aging

ADVANCED SCIENCE(2023)

引用 3|浏览12
暂无评分
摘要
Abnormal resumption of meiosis and decreased oocyte quality are hallmarks of maternal aging. Transcriptional silencing makes translational control an urgent task during meiosis resumption in maternal aging. However, insights into aging-related translational characteristics and underlying mechanisms are limited. Here, using multi-omics analysis of oocytes, it is found that translatomics during aging is related to changes in the proteome and reveals decreased translational efficiency with aging phenotypes in mouse oocytes. Translational efficiency decrease is associated with the N6-methyladenosine (m6A) modification of transcripts. It is further clarified that m6A reader YTHDF3 is significantly decreased in aged oocytes, inhibiting oocyte meiotic maturation. YTHDF3 intervention perturbs the translatome of oocytes and suppress the translational efficiency of aging-associated maternal factors, such as Hells, to affect the oocyte maturation. Moreover, the translational landscape is profiled in human oocyte aging, and the similar translational changes of epigenetic modifications regulators between human and mice oocyte aging are observed. In particular, due to the translational silence of YTHDF3 in human oocytes, translation activity is not associated with m6A modification, but alternative splicing factor SRSF6. Together, the findings profile the specific translational landscapes during oocyte aging in mice and humans, and uncover non-conservative regulators on translation control in meiosis resumption and maternal aging.
更多
查看译文
关键词
Hells,m6A modifications,oocyte aging,translatomics,YTHDF3
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要