谷歌浏览器插件
订阅小程序
在清言上使用

Spatial Cognition Training Rapidly Induces Cortical Plasticity in Blind Navigation: Transfer of Training Effect & Granger Causal Connectivity Analysis.

IS&T International Symposium on Electronic Imaging Science and Technology(2023)

引用 0|浏览2
暂无评分
摘要
How is the cortical navigation network reorganized by the Likova Cognitive-Kinesthetic Navigation Training? We measured Granger-causal connectivity of the frontal-hippocampal-insular-retrosplenial-V1 network of cortical areas before and after this one-week training in the blind. Primarily top-down influences were seen during two tasks of drawing-from-memory (drawing complex maps and drawing the shortest path between designated map locations), with the dominant role being congruent influences from the egocentric insular to the allocentric spatial retrosplenial cortex and the amodal-spatial sketchpad of V1, with concomitant influences of the frontal cortex on these areas. After training, and during planning-from-memory of the best on-demand path, the hippocampus played a much stronger role, with the V1 sketchpad feeding information forward to the retrosplenial region. The inverse causal influences among these regions generally followed a recursive feedback model of the opposite pattern to a subset of congruent influences. Thus, this navigational network reorganized its pattern of causal influences with task demands and the navigation training, which produced marked enhancement of the navigational skills.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要