Eccentric Minidisks in Accreting Binaries

ASTROPHYSICAL JOURNAL(2024)

引用 0|浏览7
暂无评分
摘要
We show that gas disks around the components of an orbiting binary system (so-called minidisks) may be susceptible to a resonant instability that causes the minidisks to become significantly eccentric. Eccentricity is injected by, and also induces, regular impacts between the minidisks at roughly the orbital period of the binary. Such eccentric minidisks are seen in vertically integrated, two-dimensional simulations of a circular, equal-mass binary accreting from a circumbinary gas disk with a Gamma-law equation of state. Minidisk eccentricity is suppressed by the use of an isothermal equation of state. However, the instability still operates and can be revealed in a minimal disk-binary simulation by removing the circumbinary disk and feeding the minidisks from the component positions. Minidisk eccentricity is also suppressed when the gravitational softening length is large (greater than or similar to 4% of the binary semimajor axis), suggesting that its absence could be an artifact of widely adopted numerical approximations; a follow-up study in three dimensions with well-resolved, geometrically thin minidisks (aspect ratios less than or similar to 0.02) may be needed to assess whether eccentric minidisks can occur in real astrophysical environments. If they can, the electromagnetic signature may be important for discriminating between binary and single black hole scenarios for quasiperiodic oscillations in active galactic nuclei; in turn, this might aid in targeted searches with pulsar timing arrays for individual supermassive black hole binary sources of low-frequency gravitational waves.
更多
查看译文
关键词
Eccentricity,Binary stars,Astrophysical black holes,Gravitational wave sources,Hydrodynamical simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要