Chromatin Reprogramming and Bone Regeneration in Vitro and in Vivo Via the Microtopography-Induced Constriction of Cell Nuclei

Nature biomedical engineering(2023)

引用 5|浏览27
暂无评分
摘要
Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells’ chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells’ responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells’ chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming. Micropillar patterns causing changes in the nuclear and cellular morphologies of human mesenchymal stromal cells influence the conformation of the cells’ chromatin and their osteogenic differentiation in vitro and in mice.
更多
查看译文
关键词
Genomics,Stem cells,Biomedicine,general,Biomedical Engineering/Biotechnology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要