谷歌浏览器插件
订阅小程序
在清言上使用

Fe(III) Docking-Activated Sites in Layered Birnessite for Efficient Water Oxidation.

Journal of the American Chemical Society(2023)

引用 6|浏览24
暂无评分
摘要
Non-noble metal catalysts for promoting the sluggish kinetics of oxygen evolution reaction (OER) are essential to efficient water splitting for sustainable hydrogen production. Birnessite has a local atomic structure similar to that of an oxygen-evolving complex in photosystem II, while the catalytic activity of birnessite is far from satisfactory. Herein, we report a novel Fe-Birnessite (Fe-Bir) catalyst obtained by controlled Fe(III) intercalation- and docking-induced layer reconstruction. The reconstruction dramatically lowers the OER overpotential to 240 mV at 10 mA/cm2 and the Tafel slope to 33 mV/dec, making Fe-Bir the best of all the reported Bir-based catalysts, even on par with the best transition-metal-based OER catalysts. Experimental characterizations and molecular dynamics simulations elucidate that the catalyst features active Fe(III)-O-Mn(III) centers interfaced with ordered water molecules between neighboring layers, which lower reorganization energy and accelerate electron transfer. DFT calculations and kinetic measurements show non-concerted PCET steps conforming to a new OER mechanism, wherein the neighboring Fe(III) and Mn(III) synergistically co-adsorb OH* and O* intermediates with a substantially reduced O-O coupling activation energy. This work highlights the importance of elaborately engineering the confined interlayer environment of birnessite and more generally, layered materials, for efficient energy conversion catalysis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要