谷歌浏览器插件
订阅小程序
在清言上使用

Engineering the Local Atomic Configuration in 2H TMDs for Efficient Electrocatalytic Hydrogen Evolution.

ACS nano(2023)

引用 4|浏览9
暂无评分
摘要
The introduction of heteroatoms is a widely employed strategy for electrocatalysis of transition metal dichalcogenides (TMDs). This approach activates the inactive basal plane, effectively boosting the intrinsic catalytic activity. However, the effect of atomic configurations incorporated within the TMDs' lattice on catalytic activity is not thoroughly understood owing to the lack of controllable synthetic approaches for highly doped TMDs. In this study, we demonstrate a facile approach to realizing heavily doped MoS2 with a high doping concentration above 16% via intermediate-reaction-mediated chemical vapor deposition. As the V doping concentration increased, the incorporated V atoms coalesced in a manner that enabled both the basal plane activation and electrical conductivity enhancement of MoS2. This accelerated the kinetics of the hydrogen evolution reaction (HER) through the reduced Gibbs free energy of hydrogen adsorption, as evidenced by experimental and theoretical analyses. Consequently, the coalesced V-doped MoS2 exhibited superior HER performance, with an overpotential of 100 mV at 10 mA cm-2, surpassing the pristine and single-atom-doped counterparts. This study provides an intriguing pathway for engineering the atomic doping configuration of TMDs to develop efficient 2D nanomaterial-based electrocatalysts.
更多
查看译文
关键词
chemical vapor deposition,coalesced doping,electrocatalysis,hydrogen evolution reaction,transition metal dichalcogenides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要