Chrome Extension
WeChat Mini Program
Use on ChatGLM

The Properties of Wind and Jet from a Super-Eddington Accretion Flow Around a Supermassive Black Hole

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

Cited 5|Views0
No score
Abstract
Wind and jet are important medium of active galactic nucleus (AGN) feedback thus it is crucial to obtain their properties for the feedback study. In this paper we investigate the properties of wind and jet launched from a magnetized super-Eddington accretion flow around a supermassive black hole. For this aim, we have performed radiation magnetohydrodynamical simulation of a magnetically arrested super-Eddington accretion flows. We then have analysed the simulation data by the 'virtual particle trajectory' approach and obtained the mass flux, poloidal, and toroidal velocities, and mass-flux-weighted momentum and energy fluxes of wind and jet. The mass flux is found to be two to six times higher than that obtained based on the time-averaged streamline method widely used in literature. The momentum flux of wind is found to be larger than that of jet, while the total energy flux of jet is at most three times larger than that of wind. These results are similar to the case of hot accretion flows and imply that winds likely play a more important role than jet in AGN feedback. The acceleration mechanism of wind and jet is analysed and found to be dominated by Lorentz force rather than radiation force.
More
Translated text
Key words
(magnetohydrodynamics) MHD,black hole physics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined