谷歌浏览器插件
订阅小程序
在清言上使用

Ti-6Al-4V Hollow-Strut Lattice Materials by Laser Powder Bed Fusion

JOM(2021)

引用 3|浏览0
暂无评分
摘要
Hollow-strut metal lattices are an emerging class of cellular metallic materials. However, their mechanical properties at relative densities (rho(RD)) higher than 10% are largely unknown because conventional manufacturing methods are ill-equipped to fabricate them. In this study, face-centered cubic (FCC) and FCC with Z-struts (FCCZ) Ti-6Al-4V hollow-strut lattices with rho(RD) = 8-16% were fabricated using laser powder bed fusion (LPBF) additive manufacturing (AM). Both lattice topologies exhibited yield strength (sigma*) and elastic modulus (E*) at the upper empirical limits for solid-strut metal lattices with similar pRD values. Furthermore, the difference in sigma* or E* between hollow-strut FCC and FCCZ lattices is much smaller than that between solid-strut FCC and FCCZ lattices. The deformation behaviours and failure modes of the LPBF-manufactured Ti-6Al-4V hollow-strut FCC and FCCZ lattices were investigated by uniaxial compression and finite element modelling (FEM). In addition to the lattice topology, the fine (similar to 20 mu m) prior-beta grains in the Ti-6Al-4V hollow-strut thin walls contribute positively to the superior mechanical properties, compared with the coarse grains in Ti-6Al-4V solid-strut lattices. Finally, the manufacturability established in this work provides a reliable pathway for LPBF-AM of Ti-6Al-4V hollow-strut lattices. The findings of this work are expected to apply to other hollow-strut lattice topologies.
更多
查看译文
关键词
Hollow-strut lattice,Additive manufacturing,Mechanical properties,Ti-6Al-4V
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要