Chrome Extension
WeChat Mini Program
Use on ChatGLM

ParameterNet: Parameters Are All You Need for Large-scale Visual Pretraining of Mobile Networks.

Computing Research Repository (CoRR)(2024)

Huawei Noah's Ark Lab | University of Sydney | University of Macau

Cited 28|Views38
Abstract
The large-scale visual pretraining has significantly improve the performance of large vision models. However, we observe the low FLOPs pitfall that the existing low-FLOPs models cannot benefit from large-scale pretraining. In this paper, we introduce a novel design principle, termed ParameterNet, aimed at augmenting the number of parame-ters in large-scale visual pretraining models while minimizing the increase in FLOPs. We leverage dynamic convolutions to incorporate additional parameters into the networks with only a marginal rise in FLOPs. The ParameterNet approach allows low-FLOPs networks to take advantage of large-scale visual pretraining. Furthermore, we extend the ParameterNet concept to the language domain to enhance inference results while preserving inference speed. Experiments on the large-scale ImageNet-22K have shown the superiority of our ParameterNet scheme. For example, ParameterNet-600M can achieve higher accuracy than the widely-used Swin Transformer ( 81.6% vs. 80.9%) and has much lower FLOPs (0.6G vs. 4.5G). The code will be released at https://parameternet.github.io/.
More
Translated text
Key words
Large-scale Pretraining,Rational Design,Visual Model,Language Domains,Large Datasets,Learning Rate,Convolutional Layers,Computer Vision,Object Detection,Large-scale Datasets,Visual Task,Weight Decay,ImageNet,Semantic Segmentation,Fully-connected Layer,Language Model,Number Of Experts,Top-1 Accuracy,Transformer Architecture,Standard Convolution,Vision Transformer,Base Learning Rate,AdamW Optimizer,Hidden Size,Training Loss,Training Dataset,Neural Network,Trainable Parameters
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
A Romero,N Ballas, SE Kahou, A Chassang,C Gatta,Y Bengio
2015

被引用24762 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本文提出ParameterNet,一种新型设计原理,通过在不显著增加FLOPs的情况下增加模型参数,使低FLOPs网络能够从大规模视觉预训练中获益,并在视觉和语言领域均取得了优越性能。

方法】:ParameterNet利用动态卷积在保持FLOPs几乎不变的情况下,向网络中引入额外的参数。

实验】:作者在ImageNet-22K数据集上对ParameterNet进行了实验验证,ParameterNet-600M模型在准确度上超过了广泛使用的Swin Transformer(81.6% vs. 80.9%),同时FLOPs远低于后者(0.6G vs. 4.5G)。在语言领域,增强版LLaMA-1B模型通过ParameterNet实现了2%的准确度提升。