谷歌浏览器插件
订阅小程序
在清言上使用

Taming the nucleation and growth kinetics of lead halide perovskite quantum dots

Research Square (Research Square)(2022)

引用 0|浏览2
暂无评分
摘要
Abstract Colloidal lead halide perovskite (LHP) nanocrystals (NCs, with bright and spectrally narrow photoluminescence (PL) tunable over the entire visible spectral range, are the latest generation of semiconductor quantum dots (QDs) of immense interest as classical and quantum light sources. LHP NCs form by sub-second fast and hence hard-to-control ionic metathesis reactions, which severely limits the access to size-uniform and shape-regular NCs in the sub-10 nm range. We posit that a synthesis path comprising an intricate equilibrium between the precursor (PbBr2) and the Cs[PbBr3] solute for the QD nucleation may circumvent this challenge. Here, we report a room-temperature synthesis of monodisperse, isolable spheroidal CsPbBr3 QDs, size-tunable in the 3-13 nm range. The kinetics of both nucleation and therefrom temporally separated growth are drastically slowed down by the formation of transient Cs[PbBr3], resulting in total reaction times of up to 30 minutes. The methodology is then extended to FAPbBr3 (FA = formamidinium) and MAPbBr3 (MA = methylammonium), allowing for thorough experimental comparison and modeling of their physical properties under intermediate quantum confinement. In particular, QDs of all these compositions exhibit up to four excitonic transitions in their linear absorption spectra and we demonstrate that the size-dependent confinement energy for all transitions is independent of the A-site cation.
更多
查看译文
关键词
quantum dots,lead halide,nucleation,growth kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要