Energy Dissipation Rate Estimates from Airborne Atmospheric Measurements with the Max Planck CloudKites

crossref(2022)

引用 0|浏览4
暂无评分
摘要
The energy dissipation rate is one of the most important characteristics of a turbulent flow across the entire range of scales, and of particle-turbulence interaction. To investigate cloud microphysics and turbulence in clouds and in the atmospheric boundary layer, we infer coarse-grained time series of the energy dissipation rate from one-dimensional wind velocity time records by specially developed airborne platforms, the Max-Planck-CloudKite + (MPCK+) and the mini-Max-Planck-CloudKites (mini-MPCK). During the EUREC4A-ATOMIC field campaign in the Caribbean January - February 2020, both instruments are deployed aboard balloon-kite hybrids launched from RV Maria S. Merian and RV Meteor conducting in situ measurements of the wind velocity and meteorological as well as cloud microphysical properties with high spatial and temporal resolution. We present estimates of the energy dissipation rate from in situ velocity time records by the MPCKs during the EUREC4A-ATOMIC field campaign and preliminary assessment of turbulence features.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要