基于共生菌群调控诠释外用中药治疗慢性创面机制的认知与思考
Chinese Traditional and Herbal Drugs(2022)
南京中医药大学江苏省中医外用药开发与应用工程研究中心 210023 | 南京中医药大学附属南京医院临床科研中心 210003 | 南京中医药大学江苏省中药资源产业化过程协同创新中心 210023
Abstract
在老龄化背景下慢性创面已成为严重威胁人民生命健康的重大公共卫生问题,在中医理论的指导下,外用中药在慢性创面治疗方面形成了独特的理论和治法,并且特别重视寒热药性的影响,但其科学内涵与作用机制还有待于深入诠释以更好地服务于临床应用.最新研究表明,共生菌群能够发挥免疫调节和促愈作用,故而对于慢性创面治疗具有重要意义,绝对无菌反而不利于创面愈合.因此提出通过创面菌群调控认知探讨以马勃Calvatia gigantean为代表的外用中药"煨脓长肉"治疗慢性创面作用机制的研究思路,以及基于创面菌群-肠道菌群调控的创面外用中药寒热药性作用机制的研究思路,为科学认知和充分发挥外用中药临床独特疗效和医学生物学机制提供参考和借鉴,为外用中药治疗慢性创面的现代研究提供新思路.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2009
被引用607 | 浏览
2013
被引用22 | 浏览
2013
被引用12 | 浏览
2018
被引用281 | 浏览
2019
被引用91 | 浏览
2020
被引用15 | 浏览
2019
被引用4 | 浏览
2018
被引用15 | 浏览
2017
被引用15 | 浏览
2021
被引用20 | 浏览
2021
被引用5 | 浏览
2021
被引用5 | 浏览
2022
被引用2 | 浏览
2022
被引用2 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper