Photophysiological response of autumn phytoplankton in the Antarctic Sea-Ice Zone

crossref(2023)

引用 0|浏览1
暂无评分
摘要
Abstract. The High Nutrient-Low Chlorophyll condition of the Southern Ocean is generally thought to be caused by the low bioavailability of micronutrients, particularly iron, which plays an integral role in phytoplankton photosynthesis. Nevertheless, the Southern Ocean experiences seasonal blooms that generally initiate in austral spring, peak in summer and extend into autumn. This seasonal increase in primary productivity is typically linked to the seasonal characteristics of nutrient and light supply. To better understand the constraints on productivity in the Antarctic Sea-Ice Zone (SIZ), the photophysiological response of phytoplankton to iron addition was investigated during autumn along the Antarctic coast off Dronning Maud Land. Five short-term (24 hr) incubation experiments were conducted around Astrid Ridge (68° S) and along a 6° E transect, where an autumn bloom was identified in the region of the western SIZ. Surface iron concentrations ranged from 0.27 to 1.39 nM around Astrid Ridge, and 0.56 to 0.63 nM along the 6° E transect. The photophysiological response of phytoplankton to iron addition, measured through the photosynthetic efficiency and the absorption cross-section for photosystem II, showed no significant responses. This confirms that phytoplankton were not iron-limited at the time and that ambient iron concentrations were sufficient to fulfil the cellular requirements. This provides new insights into extended iron replete post-bloom conditions in the typically assumed iron deficient High Nutrient-Low Chlorophyll Southern Ocean.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要