谷歌浏览器插件
订阅小程序
在清言上使用

A Machine Learning-Based Fault Identification Method for Microgrids with Distributed Generations

Journal of Physics Conference Series(2022)

引用 1|浏览5
暂无评分
摘要
The development of renewable energy sources such as solar and wind based on distributed generators are growing rapidly in the face of the global energy crisis. As a connection between distributed generation and the main grid, microgrids are also growing rapidly. However, due to the randomness and uncertainty of the output of the solar and wind power, as well as the bidirectional characteristic of current flow, the faults in microgrids are difficult to identify using the traditional fault detection methods. To address this problem, this paper proposes a machine learning-based fault identification method for microgrids. First, the modified K-means algorithm is implemented to cluster the voltage data. Then, FP-growth algorithm is using to extract the association rules. Third, the mini-batch gradient descent (MBGD) algorithm is using to train the fault identification model based on machine learning theory. To verify the validity of this method, a case study considering single-phase short-circuit fault and two-phase phase short-circuit fault is simulated. The method presented in this work is with a high accuracy according to the simulation results.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要