29.3 an 8.09TOPS/W Neural Engine Leveraging Bit-Sparsified Sign-Magnitude Multiplications and Dual Adder Trees
2023 IEEE International Solid-State Circuits Conference (ISSCC)(2023)
关键词
2.5× area increase,bit-sparsified sign-magnitude multiplications,central MAC units,computational complexity,energy consumption,Fig. 29.3.1 center,gate-level simulations,general purpose computing,high-efficiency neural accelerator engines,modest energy improvement,neural computation,neural networks,normally distributed operands,previous neural engines,sign bits,sign-magnitude multiplication,sign-magnitude number representation,significant overhead,SM addition,SM multiplication,SM representation,subtraction,uniformly distributed operands
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要