玉米低聚肽改善地塞米松诱导的肌肉萎缩效果研究
West China Medical Journal(2023)
四川大学华西公共卫生学院;四川大学华西第四医院 | 四川大学华西医院 | 四川大学
Abstract
目的 研究玉米低聚肽(corn oligopeptide,COP)对地塞米松诱导的肌肉萎缩的改善作用.方法 49只8周龄Sprague-Dawley雄性大鼠分为空白组(10只)和模型组(39只),模型组腹腔注射地塞米松(1.0mg/kg),空白组注射生理盐水.19 d后,空白组取1只、模型组取3只观察模型是否构建成功.造模成功后,将模型组随机分为模型对照组、COP低剂量组(COP-L组,0.5 g/kg)、COP中剂量组(COP-M组,1.0 g/kg)和COP高剂量组(COP-H组,2.0g/kg),9只/组,干预33d后测大鼠抓力,随后麻醉处死,分离腓肠肌、比目鱼肌、胫骨前肌和跖肌称重,并测肌纤维直径、Atrogin-1和MuRF-1 mRNA相对表达量及腓肠肌非靶向代谢组学.结果 与空白组相比,模型组大鼠体重显著降低(P<0.05),肌原纤维破裂,提示造模成功.与模型对照组相比,COP-L组、COP-M组抓力提高(P<0.05);COP-L组、COP-H组腓肠肌、比目鱼肌肌肉系数增大(P<0.05),COP-L组、COP-M组跖肌肌肉系数增大(P<0.05);COP 3个剂量组大鼠胫骨前肌肌纤维直径增加(P<0.05),COP-M组、COP-H组跖肌肌纤维直径增加(P<0.05);COP 3个剂量组比目鱼肌Atrogin-1 mRNA相对表达量均下降(P<0.05),COP-L组、COP-H组MuRF-1 mRNA相对表达量下降(P<0.05).腓肠肌中氨基酸合成通路、糖酵解通路、酸代谢通路激活.结论 给予COP可显著改善地塞米松诱导的肌肉萎缩,其机制可能与COP减小泛素-蛋白酶体途径中关键基因Atrogin-1、MuRF-1表达和增加肌肉中重要氨基酸的生物合成有关.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper