谷歌浏览器插件
订阅小程序
在清言上使用

Controlling the Semiconductor-Metal Transition in Cu-intercalated TiSe2 by Applying Stress

Journal of materials chemistry C(2023)

引用 1|浏览20
暂无评分
摘要
A possibility of efficiently controlling the optoelectronic properties of quasi-two-dimensional transition metal chalcogenides could greatly expand their innovative applications. Titanium diselenide (TiSe2) is a scientifically and industrially important representative of this class, serving as a model for others. Here, we experimentally discovered a room-temperature semiconductor-metal transition in Cu-intercalated TiSe2 single crystals (x <= 0.1) controlled by applying a mechanical stress. We investigated the effect of applied high pressure on the electronic transport properties of CuxTiSe2 (0 <= x < 0.6) single crystals at room temperature by measurements of thermoelectric power (Seebeck coefficient). We found that the CuxTiSe2 crystals with a small copper content (x <= 0.1) are semiconductors with narrow band gaps of E-g approximate to 40-50 meV. An applied stress of 1-3 GPa, depending on the composition, turned them to metals. This transition was reversible and well reproducible under multiple pressure cycling. The difference in the metallization pressures was related to the difference in pressure coefficients of their band gaps that increased with the copper content, from dE(g)/dP = -17 meV GPa(-1) for x = 0.002 to -60 meV GPa(-1) for x = 0.1. Crystals of binary TiSe2 demonstrated a reversible phase transition to a metal above 4 GPa, which was accompanied by a p-n inversion of the conductivity type. These findings suggest emerging potential applications of CuxTiSe2 crystals in various optoelectronic micro-devices in which characteristics of elements can be tuned or controlled by stress or strain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要