Raman study of pressure-induced phase transitions in imidazolium manganese- hypophosphite hybrid perovskite

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy(2023)

引用 0|浏览21
暂无评分
摘要
By using Raman spectroscopy, we demonstrate that [IM]Mn(HPOO) is a highly compressible material that undergoes three pressure-induced phase transitions. Using a diamond anvil cell we performed high-pressure experiments up to 7.1 GPa, using paraffin oil as the compression medium. The first phase transition, which occurs near 2.9 GPa, leads to very pronounced changes in the Raman spectra. This behavior indicates that this transition is associated with very large reconstruction of the inorganic framework and collapse of the perovskite cages. The second phase transition, which occurs near 4.9 GPa, is associated with subtle structural changes. The last transition takes place near 5.9 GPa and it leads to further significant distortion of the anionic framework. In contrast to the anionic framework, the phase transitions have weak impact on the imidazolium cation. Pressure dependence of Raman modes proves that compressibility of the high-pressure phases is significantly lower compared to the ambient pressure phase. It also indicates that the contraction of the MnO octahedra prevails over that of the imidazolium cations and hypophosphite linkers. However, compressibility of MnO strongly decreases in the highest pressure phase. Pressure-induced phase transitions are reversible.
更多
查看译文
关键词
phase transitions,pressure-induced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要