Thermo-responsive polymer catalysts for polyester recycling processes: switching from homogeneous catalysis to heterogeneous separations

POLYMER CHEMISTRY(2023)

引用 0|浏览25
暂无评分
摘要
Inspired by the endless versatility offered by functional polymer materials in terms of modulating and imprinting diverse chemical, physical, and/or biological properties, we developed and screened a family of polymer catalysts, combining highly efficient catalytic functional groups with stimuli-responsive properties, to bring together the advantages of homogeneous catalysis and heterogeneous separation processes in a single catalytic system. We demonstrate that different degrees of anion exchange in (co)polymers based on chlorozincate poly(ionic liquid)s lead to anion speciation effects that play an important role in modulating the physical properties of these materials and in enabling reversible thermal transitions in solution (i.e., upper critical solution temperature (UCST) behavior in glycolic solvents). Thus, the intrinsic properties of these functional materials supported the homogeneous depolymerization of post-consumer poly(ethylene terephthalate) (PET), through catalyzed glycolysis, to achieve high conversion (>91%) and product selectivity (>90%). Subsequently, taking advantage of the thermo-responsive properties (i.e., UCST behavior) of these (co)polymer catalysts, we switch the reaction system from a homogeneous to a heterogeneous state to potentially enable catalyst recovery and/or reuse for further depolymerization cycles without a detriment of catalytic activity. Hence, this work demonstrates the great potential of integrating both stimuli-responsive and catalytic properties into polymer materials to develop programmable catalysts for overcoming current limitations of homogeneous and heterogeneous catalysts in industrially relevant chemical processes. Particularly, this approach contributes to closing the loop toward developing fully circular materials and processes for the chemical recycling of PET.
更多
查看译文
关键词
polyester recycling processes,homogeneous catalysis,polymer,thermo-responsive
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要