Fast Prediction of Turbine Energy Acquisition Capacity under Combined Action of Wave and Current Based on Digital Twin Method
SHIPS AND OFFSHORE STRUCTURES(2024)
Abstract
Due to the strong nonlinear interaction between the flow field and blades, the prediction of turbine energy acquisition capacity is still quite complex, the traditional methods take too long time to evaluate. In this article, the digital twin model + CFD simulation + monitor data are used for turbine energy efficiency assessment. A self-designed vertical wave flow turbine (VWFT) is taken as the research object, the prediction takes into account the coupling of the VWFT for motion and blade rotation, which is in good agreement with the monitor data at sea. The simulations show that the torque, thrust force and lateral force flow rate data can be loaded from the database into the digital model. If those data are not in the database, the interpolation method is used along with deep learning of recurrent neural network to obtain the energy harvesting parameters, all the error is no more than 10%.
MoreTranslated text
Key words
Digital twin,vertical wave flow turbine,deep learning,recurrent neural network,energy acquisition capacity
求助PDF
上传PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined