谷歌浏览器插件
订阅小程序
在清言上使用

Deep Learning-Based Quantitative Morphological Study of Anteroposterior Digital Radiographs of the Lumbar Spine

Quantitative imaging in medicine and surgery(2023)

引用 1|浏览4
暂无评分
摘要
Background: Morphological parameters of the lumbar spine are valuable in assessing lumbar spine diseases. However, manual measurement of lumbar morphological parameters is time-consuming. Deep learning has automatic quantitative and qualitative analysis capabilities. To develop a deep learning-based model for the automatic quantitative measurement of morphological parameters from anteroposterior digital radiographs of the lumbar spine and to evaluate its performance.Methods: This study used 1,368 anteroposterior digital radiographs of the lumbar spine to train a deep learning model to measure the quantitative morphological indicators, including L1 to L5 vertebral body height (VBH) and L1-L2 to L4-L5 intervertebral disc height (IDH). The means of the manual measurements by three radiologists were used as the reference standard. The parameters predicted by the model were analyzed against the manual measurements using paired t-tests. Percentage of Correct Key Points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and Bland-Altman plots were performed to assess the performance of the model.Results: Within the 3-mm distance threshold, the model had a PCK range of 99.77-99.46% for the L1 to L4 vertebrae and 77.37% for the L5 vertebrae. Except for VBH-L5 and IDH_L3-L4, IDH_L4-L5 (P<0.05), the estimated values of the model in the remaining parameters were not statistically significant compared with the reference standard (P>0.05). Except for VBH-L5 and IDH_L4-L5, the model showed good correlation and consistency with the reference standard (ICC =0.84-0.96, r=0.85-0.97, MAE =0.5-0.66, RMSE =0.66-0.95). The model outperformed other models (EfficientDet + Unet, EfficientDet + DarkPose, HRNet, and U-net) in predicting landmarks within a distance threshold of 1.5 to 5 mm.Conclusions: The model developed in this study can automatically measure the morphological parameters of the L1 to L4 vertebrae from anteroposterior digital radiographs of the lumbar spine. Its performance is close to the level of radiologists.
更多
查看译文
关键词
Deep learning,anteroposterior digital radiographs of lumbar spine,automatic measurement,morphological quantitative
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要