Growth, antioxidant system, and phytohormonal status of barley cultivars contrasting in cadmium tolerance

Environmental Science and Pollution Research(2023)

引用 1|浏览3
暂无评分
摘要
Cadmium leads to disturbance of plant growth, and the manifestation of toxicity can vary greatly in different genotypes within one species. In this work we studied the effect of Cd on growth, antioxidant enzyme activity, and phytohormonal status of four barley cultivars (cvs. Simfoniya, Mestnyj, Ca 220702, Malva). According to the earlier study on seedlings, these cultivars were contrast in tolerance to Cd: Simfoniya and Mestnyj are Cd-tolerant and Ca 220702 and Malva are Cd-sensitive. The results presented showed that barley plants accumulated more Cd in straw than in grain. Tolerant cultivars accumulated significantly less Cd in grain than sensitive ones. The leaf area appeared to be a growth parameter susceptible to Cd treatment. The significant differences in leaf area values depended on Cd contamination and were not associated with cultivars’ tolerance. Tolerance of cultivars was contingent on the activity of the antioxidant defense system. Indeed, activity of enzymes decreased in sensitive cultivars Ca 220702 and Malva under Cd stress. In contrast, in tolerant cultivars, increased activity of guaiacol peroxidase was revealed. The concentrations of abscisic acid and salicylic acid mostly increased as a result of Cd treatment, while the concentrations of auxins and trans -zeatin either decreased or did not change. The results obtained indicate that antioxidant enzymes and phytohormones play an important role in the response of barley plants to elevated concentrations of cadmium; however, these parameters are not able to explain the differentiation of barley cultivars in terms of tolerance to cadmium at the seedling stage. Therefore, barley intraspecific polymorphism for cadmium resistance is determined by the interplay of antioxidant enzymes, phytohormones, and other factors that require further elucidation.
更多
查看译文
关键词
Barley, Cadmium accumulation, Antioxidant enzymes, Phytohormones, Shoot length, Shoot biomass, Leaf area, Genotypes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要