Laying the foundation of the effective-one-body waveform models SEOBNRv5: improved accuracy and efficiency for spinning non-precessing binary black holes

arXiv (Cornell University)(2023)

引用 0|浏览24
暂无评分
摘要
We present SEOBNRv5HM, a more accurate and faster inspiral-merger-ringdown gravitational waveform model for quasi-circular, spinning, nonprecessing binary black holes within the effective-one-body (EOB) formalism. Compared to its predecessor, SEOBNRv4HM, the waveform model i) incorporates recent high-order post- Newtonian results in the inspiral, with improved resummations, ii) includes the gravitational modes (l, |m|) = (3, 2), (4, 3), in addition to the (2, 2), (3, 3), (2, 1), (4, 4), (5, 5) modes already implemented in SEOBNRv4HM, iii) is calibrated to larger mass-ratios and spins using a catalog of 442 numerical-relativity (NR) simulations and 13 additional waveforms from black-hole perturbation theory, iv) incorporates information from second-order gravitational self-force (2GSF) in the nonspinning modes and radiation-reaction force. Computing the unfaithfulness against NR simulations, we find that for the dominant (2, 2) mode the maximum unfaithfulness in the total mass range $10-300 M_{\odot}$ is below $10^{-3}$ for 90% of the cases (38% for SEOBNRv4HM). When including all modes up to l = 5 we find 98% (49%) of the cases with unfaithfulness below $10^{-2} (10^{-3})$, while these numbers reduce to 88% (5%) when using SEOBNRv4HM. Furthermore, the model shows improved agreement with NR in other dynamical quantities (e.g., the angular momentum flux and binding energy), providing a powerful check of its physical robustness. We implemented the waveform model in a high-performance Python package (pySEOBNR), which leads to evaluation times faster than SEOBNRv4HM by a factor 10 to 50, depending on the configuration, and provides the flexibility to easily include spin-precession and eccentric effects, thus making it the starting point for a new generation of EOBNR waveform models (SEOBNRv5) to be employed for upcoming observing runs of the LIGO-Virgo-KAGRA detectors.
更多
查看译文
关键词
black holes,models seobnrv5,effective-one-body,non-precessing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要