谷歌浏览器插件
订阅小程序
在清言上使用

Design of a self-cleanable multilevel anticounterfeiting interface through covalent chemical modulation

MATERIALS HORIZONS(2023)

引用 3|浏览19
暂无评分
摘要
Counterfeit products have posed a significant threat to consumers safety and the global economy. To address this issue, extensive studies have been exploring the use of coatings with unclonable, microscale features for authentication purposes. However, the ease of readout, and the stability of these features against water, deposited dust, and wear, which are required for practical use, remain challenging. Here we report a novel class of chemically functionalizable coatings with a combination of a physically unclonable porous topography and distinct physiochemical properties (e.g., fluorescence, water wettability, and water adhesion) obtained through orthogonal chemical modifications (i.e., 1,4-conjugate addition reaction and Schiff-base reaction at ambient conditions). Unprecedentedly, a self-cleanable and physically unclonable coating is introduced to develop a multilevel anticounterfeiting interface. We demonstrate that the authentication of the fluorescent porous topography can be verified using deep learning. More importantly, the spatially selective chemical modifications can be read with the naked eye via underwater exposure and UV light illumination. Overall, the results reported in this work provide a facile basis for designing functional surfaces capable of independent and multilevel decryption of authenticity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要