3D Particle Picking in Cryo-Electron Tomograms Using Instance Segmentation
IEEE International Conference on Image Processing (ICIP)(2022)CCF C
University of Chinese Academy of Sciences
Abstract
To identify and localize macromolecules of interest in crowded intracellular environment, the low signal-to-noise ratio and missing imaging wedge of cryo-electron tomography (cryo-ET) data pose substantial technical challenges. Currently, mainstream approaches of 3D particle picking in cryo-ET either follow the ‘segment-then-cluster’ strategy, or extract potential structural regions as sub-tomograms and then perform classification. Different from these two-step methods, we solve the problem using a one-step instance segmentation approach, termed 3D-SOLOv2. Specifically, the category and mask of each 3D particle are predicted according to the particle’s location and size. To solve the lack of real masks for 3D particles in cryo-ET, a Gaussian-shaped mask is proposed to approximate real masks. When tested on simulated datasets of SHREC2020 challenge, our model achieves the fastest inference speed and the state-of-the-art performance for both localization and classification tasks. When tested on real cryo-ET dataset of EMPIAR-10045, our model also achieves better performance than other methods.
MoreTranslated text
Key words
Particle picking,cryo-electron tomography,instance segmentation,deep learning,Gaussian-shaped masks
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper