3D Particle Picking in Cryo-Electron Tomograms Using Instance Segmentation
2022 IEEE International Conference on Image Processing (ICIP)(2022)
Abstract
To identify and localize macromolecules of interest in crowded intracellular environment, the low signal-to-noise ratio and missing imaging wedge of cryo-electron tomography (cryo-ET) data pose substantial technical challenges. Currently, mainstream approaches of 3D particle picking in cryo-ET either follow the ‘segment-then-cluster’ strategy, or extract potential structural regions as sub-tomograms and then perform classification. Different from these two-step methods, we solve the problem using a one-step instance segmentation approach, termed 3D-SOLOv2. Specifically, the category and mask of each 3D particle are predicted according to the particle’s location and size. To solve the lack of real masks for 3D particles in cryo-ET, a Gaussian-shaped mask is proposed to approximate real masks. When tested on simulated datasets of SHREC2020 challenge, our model achieves the fastest inference speed and the state-of-the-art performance for both localization and classification tasks. When tested on real cryo-ET dataset of EMPIAR-10045, our model also achieves better performance than other methods.
MoreTranslated text
Key words
Particle picking,cryo-electron tomography,instance segmentation,deep learning,Gaussian-shaped masks
求助PDF
上传PDF
PPT
Code
Data
View via Publisher
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined