谷歌浏览器插件
订阅小程序
在清言上使用

A Comprehensive Study of Binder Polymer for Supercapattery Electrode Based on Activated Carbon and Nickel-Silicon Composite

Materials science for energy technologies(2023)

引用 0|浏览18
暂无评分
摘要
Current trends suggest that as manufacturing and energy demand increase, there will be a greater consumtion for energy storage, requiring its utilization for days, weeks, or even months in the future. Recent studies also need to be conducted on binders that could support electrode performance, considering that binders are also a crucial component of the electrochemical processes in cells. In this study, activated carbon-based supercapacitor electrodes were fabricated using three different binders: PVDF, SBR, and LA133. With a gravimetric capacitance and power density of 52.57 Fg−1 and 92.64 W.kg−1, and a lifetime up to 87.23% after 1000 cycles, AC/CB LA133 has the best performance. LA133 was used as a binder to generate a Ni/Si composite as a battery electrode combined with the AC/CB LA133 supercapacitor to fabricate a supercapattery. This clearly shows that when a suitable binder such as LA133 is used, the electrochemical performance could be improved.
更多
查看译文
关键词
Binder,Activated Carbon,Nickel,Silicon,Supercapacitor,Battery,Supercapattery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要