谷歌浏览器插件
订阅小程序
在清言上使用

Contrasting Warming Responses of Photosynthesis in Early- and Late-Successional Tropical Trees

Tree physiology(2023)

引用 2|浏览0
暂无评分
摘要
Abstract The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at 25 °C (Vcmax25), stomatal conductance (gs) and the slope parameter of the stomatal conductance-photosynthesis model (g1), in 10 early successional (ES) and 8 late-successional (LS) tropical tree species grown at three sites along an elevation gradient in Rwanda, differing by 6.8 °C in daytime ambient air temperature. The effect of seasonal drought on An was also investigated. We found that warm climate decreased wet-season An in LS species, but not in ES species. Values of Vcmax25 were lower at the warmest site across both successional groups, and An and Vcmax25 were higher in ES compared with LS species. Stomatal conductance exhibited no significant site differences and g1 was similar across both sites and successional groups. Drought strongly reduced An at warmer sites but not at the coolest montane site and this response was similar in both ES and LS species. Our results suggest that warming has negative effects on leaf-level photosynthesis in LS species, while both LS and ES species suffer photosynthesis declines in a warmer climate with more pronounced droughts. The contrasting responses of An between successional groups may lead to shifts in species’ competitive balance in a warmer world, to the disadvantage of LS trees.
更多
查看译文
关键词
drought,elevation gradient,physiological responses,tropical trees,warming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要