Chrome Extension
WeChat Mini Program
Use on ChatGLM

The role of crystallinity of palladium nanocrystals in ROS generation and cytotoxicity induction.

Nanoscale(2023)

Cited 0|Views21
No score
Abstract
Palladium (Pd) nanocrystals with different crystalline forms exhibit distinct enzyme-like activities in generating reactive oxygen species (ROS). How such crystallinity-dependent catalytic activity regulates potential cytotoxicity remains to be elucidated. In the present work, Pd nanocrystals with four different crystalline forms were synthesized, and the underlying mechanisms involved in ROS-mediated cytotoxicity were systematically revealed. Pd nanocrystals with the {100} (nanocubes) and {111} (nanooctahedrons and nanotetrahedrons) facets triggered cytotoxicity by generating singlet oxygen (O) and hydroxyl radicals (OH˙), respectively. Meanwhile, Pd nanoconcave-tetrahedrons, which had both the {110} and {111} facets, induced ROS-mediated cytotoxicity activating the superoxide (O˙) pathway. Consumption of protons and generation of hydroxide during intracellular ROS conversion resulted in pH alkalization, eventually leading to cell death. Our findings emphasize the importance of facet-dependent ROS generation promoted by Pd nanocrystals. Furthermore, alkalization is identified as a new biomarker for analyzing ROS-mediated cytotoxicity.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined