Epigenetic developmental programming and intergenerational effects of thyroid hormones.

Vitamins and hormones(2023)

引用 2|浏览7
暂无评分
摘要
Mounting evidence is showing that altered signaling through the nuclear hormone receptor superfamily can cause abnormal, long-term epigenetic changes which translate into pathological modifications and susceptibility to disease. These effects seem to be more prominent if the exposure occurs early in life, when transcriptomic profiles are rapidly changing. At this time, the coordination of the complex coordinated processes of cell proliferation and differentiation that characterize mammalian development. Such exposures may also alter the epigenetic information of the germ line, potentially leading to developmental changes and abnormal outcomes in subsequent generations. Thyroid hormone (TH) signaling is mediated by specific nuclear receptors, which have the ability to markedly change chromatin structure and gene transcription, and can also regulate other determinants of epigenetic marks. TH exhibits pleiotropic effects in mammals, and during development, its action is regulated in a highly dynamic manner to suit the rapidly evolving needs of multiple tissues. Their molecular mechanisms of action, timely developmental regulation and broad biological effects place THs in a central position to play a role in the developmental epigenetic programming of adult pathophysiology and, through effects on the germ line, in inter- and trans-generational epigenetic phenomena. These areas of epigenetic research are in their infancy, and studies regarding THs are limited. In the context of their characteristics as epigenetic modifiers and their finely tuned developmental action, here we review some of the observations underscoring the role that altered TH action may play in the developmental programming of adult traits and in the phenotypes of subsequent generations via germ line transmission of altered epigenetic information. Considering the relatively high prevalence of thyroid disease and the ability of some environmental chemicals to disrupt TH action, the epigenetic effects of abnormal levels of TH action may be important contributors to the non-genetic etiology of human disease.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要