谷歌浏览器插件
订阅小程序
在清言上使用

State- and stimulus-specific dynamics of SMAD signaling determine fate decisions in individual cells.

Proceedings of the National Academy of Sciences of the United States of America(2023)

引用 3|浏览18
暂无评分
摘要
SMAD-mediated signaling regulates apoptosis, cell cycle arrest, and epithelial-to-mesenchymal transition to safeguard tissue homeostasis. However, it remains elusive how the relatively simple pathway can determine such a broad range of cell fate decisions and how it differentiates between varying ligands. Here, we systematically investigate how SMAD-mediated responses are modulated by various ligands of the transforming growth factor β (TGFβ) family and compare these ligand responses in quiescent and proliferating MCF10A cells. We find that the nature of the phenotypic response is mainly determined by the proliferation status, with migration and cell cycle arrest being dominant in proliferating cells for all tested TGFβ family ligands, whereas cell death is the major outcome in quiescent cells. In both quiescent and proliferating cells, the identity of the ligand modulates the strength of the phenotypic response proportional to the dynamics of induced SMAD nuclear-to-cytoplasmic translocation and, as a consequence, the corresponding gene expression changes. Interestingly, the proliferation state of a cell has little impact on the set of genes induced by SMAD signaling; instead, it modulates the relative cellular sensitivity to TGFβ superfamily members. Taken together, diversity of SMAD-mediated responses is mediated by differing cellular states, which determine ligand sensitivity and phenotypic effects, while the pathway itself merely serves as a quantitative relay from the cell membrane to the nucleus.
更多
查看译文
关键词
SMAD,TGFβ superfamily,dynamics,signal transduction,single-cell analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要