谷歌浏览器插件
订阅小程序
在清言上使用

Overturning and Heat Transport Variations in the South Atlantic in an Ocean Reanalysis Ensemble and Other Estimates

crossref(2023)

引用 0|浏览2
暂无评分
摘要
The variability of the South Atlantic meridional overturning circulation and meridional heat transport measured across 34.5°S during 2013–2017 differs significantly between observational and ocean reanalysis estimates. Variability in an ocean reanalysis ensemble and an eddy-resolving reanalysis is similar to an altimeter-based estimate, but smaller than energy-budget and mooring-based estimates. Over 1993–2020, there is no long-term trend in the ensemble-mean overturning and heat transport, although there are inter-model differences, whereas the altimeter-based and energy-budget estimate transports increase over this period. Time-mean overturning volume transport (and the depth of maximum overturning) across 34.5°S in the ensemble and observations are similar, whereas the corresponding mean heat transports differ by up to 0.3 PW. The seasonal cycle of these transports varies between estimates, due to differences in the methods for estimating the geostrophic flow and the sampling characteristics of the observational approaches. The baroclinic, barotropic and Ekman MOC components tend to augment each other in mooring-based estimates, whereas in other estimates they tend to oppose each other so the monthly-mean, inter-annual and seasonal MOC anomalies have a greater magnitude in the mooring-based estimates. Thus, the mean and variation of real world South Atlantic transports, and the amplitude of their fluctuations, are still uncertain. Ocean reanalyses may be useful tools to understand these differences and the mechanisms that control volume and heat transport variability in the South Atlantic, a region critical for determining the global overturning pathways and inter-basin transports.
更多
查看译文
关键词
Global Heat Transport,Oceanic Modeling,Ocean Circulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要