Superior Plasticity of Silver-Based Composites with Reinforcing Pyrochlore

Metals(2023)

Cited 0|Views5
No score
Abstract
Silver (Ag) has difficult forming strong bonding with oxides due to its deep d band beneath the Fermi level and completely filled 4d orbital. Thus, it is difficult to fabricate silver-based composites with superior plasticity and processability because of the easy debonding at their interface. Herein, La2Sn2O7 pyrochlore was used as a reinforcing phase for a silver matrix. The enhanced interfacial bonding strength of Ag-La2Sn2O7 was confirmed both theoretically and experimentally, indicating that Ag could form more localized ionic bonding with La2Sn2O7 than with SnO2. The superior plasticity was further confirmed for the Ag-La2Sn2O7 composite, as the uniform elongation (UE) of the Ag-La2Sn2O7 composite was similar to 19%, i.e., similar to 14% higher than and 2.8 times that of the conventional Ag-SnO2 composite. The plasticity enhancement mechanism was also unraveled by calculating the interfacial mobility. This work verified the usefulness of pyrochlore to fabricate silver-based composites with superior plasticity and also provides a new strategy for the construction of advanced silver-based composites for application in the electrical contact field.
More
Translated text
Key words
silver-based composite,plasticity,enhanced localization,interfacial bonding strength,interfacial mobility
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined