Genetically Programmable Vesicles for Enhancing CAR-T Therapy against Solid Tumors.

Advanced materials (Deerfield Beach, Fla.)(2023)

引用 4|浏览49
暂无评分
摘要
Chimeric antigen receptor-T (CAR-T) cell therapy has shown remarkable success in eradicating hematologic malignancies; however, its efficacy in treating solid tumors has always been limited due to the presence of an immune-suppressive tumor microenvironment (TME). Here, genetically programmable cellular vesicles expressing high-affinity anti-programmed death-ligand 1 single chain variable fragment (anti-PD-L1 scFv) loaded with glutamine antagonist (D@aPD-L1 NVs) are developed to metabolically dismantle the immunosuppressive TME and enhance the efficiency of anti-mesothelin CAR-T cells in orthotopic lung cancer. As anti-PD-L1 scFv can specifically bind to the programmed death-ligand 1 (PD-L1) on tumor cells, D@aPD-L1 NVs enable the targeted delivery of glutamine antagonists to the tumor site and address the upregulation of PD-L1 on tumor cells, which prevents the premature exhaustion of CAR-T cells. More importantly, D@aPD-L1 NVs effectively reduce the number of immunosuppressive cells and promote the recruitment of inflammatory cells and the secretion of inflammatory cytokines in tumor tissues. These unique features of D@aPD-L1 NVs improve the infiltration and effector functions of CAR-T cells, which ultimately enhance the anti-tumor ability and long-term memory immunity of CAR-T cells. The findings support that D@aPD-L1 NVs act as a promising drug to strengthen the effectiveness of CAR-T cells against solid tumors.
更多
查看译文
关键词
chimeric antigen receptor-T,genetic engineering,immune checkpoint blockade,metabolic reprogramming,nanovesicles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要