Io's Optical Aurorae in Jupiter's Shadow

arxiv(2023)

引用 2|浏览49
暂无评分
摘要
Decline and recovery timescales surrounding eclipse are indicative of the controlling physical processes in Io's atmosphere. Recent studies have established that the majority of Io's molecular atmosphere, SO2 and SO, condenses during its passage through Jupiter's shadow. The eclipse response of Io's atomic atmosphere is less certain, having been characterized solely by ultraviolet aurorae. Here we explore the response of optical aurorae for the first time. We find oxygen to be indifferent to the changing illumination, with [O I] brightness merely tracking the plasma density at Io's position in the torus. In shadow, line ratios confirm sparse SO2 coverage relative to O, since their collisions would otherwise quench the emission. Io's sodium aurora mostly disappears in eclipse and e-folding timescales, for decline and recovery differ sharply: ~10 minutes at ingress and nearly 2 hr at egress. Only ion chemistry can produce such a disparity; Io's molecular ionosphere is weaker at egress due to rapid recombination. Interruption of a NaCl+ photochemical pathway best explains Na behavior surrounding eclipse, implying that the role of electron impact ionization is minor relative to photons. Auroral emission is also evident from potassium, confirming K as the major source of far red emissions seen with spacecraft imaging at Jupiter. In all cases, direct electron impact on atomic gas is sufficient to explain the brightness without invoking significant dissociative excitation of molecules. Surprisingly, the nonresponse of O and rapid depletion of Na is opposite the temporal behavior of their SO2 and NaCl parent molecules during Io's eclipse phase.
更多
查看译文
关键词
Galilean satellites,Eclipses,High resolution spectroscopy,Aurorae,Planetary magnetospheres
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要