Chrome Extension
WeChat Mini Program
Use on ChatGLM

Diallyl trisulfide inhibits monosodium urate-induced NLRP3 inflammasome activation via NOX3/4-dependent mitochondrial oxidative stress in RAW 264.7 and bone marrow-derived macrophages.

Phytomedicine : international journal of phytotherapy and phytopharmacology(2023)

Cited 6|Views36
No score
Abstract
BACKGROUND:Monosodium urate (MSU) crystals are associated with gouty inflammatory diseases. MSU-associated inflammation is majorly triggered by NOD-like receptor protein 3 (NLRP3) inflammasome that promotes interleukin (IL)-1β secretion. Although diallyl trisulfide (DATS) is well-known polysulfide garlic compounds with anti-inflammatory effects, its action in MSU-induced inflammasome activation has not been known yet. PURPOSE:The objective of the current study was to investigate anti-inflammasome effects and mechanisms of DATS in RAW 264.7 and bone marrow-derived macrophages (BMDM). METHODS:The concentrations of IL-1β were analyzed with enzyme-linked immunosorbent assay. The MSU-induced mitochondrial damage and reactive oxygen species (ROS) production were detected by fluorescence microscope and flow cytometry. The protein expressions of NLRP3 signaling molecules, NADPH oxidase (NOX) 3/4 were assessed with Western blotting. RESULTS:DATS suppressed MSU-induced IL-1β and caspase-1 accompanied by decreased inflammasome complex formation in RAW 264.7 and BMDM. In addition, DATS restored mitochondrial damage. DATS downregulated NOX 3/4 that were upregulated by MSU as predicted by gene microarray and confirmed by Western blotting. CONCLUSION:This study first reports mechanistic finding that DATS alleviates MSU-induced NLRP3 inflammasome by mediating NOX3/4-dependent mitochondrial ROS production in macrophages in vitro and ex vivo, suggesting DATS could be effective therapeutic candidate for gouty inflammatory condition.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined