谷歌浏览器插件
订阅小程序
在清言上使用

Transferrin-mediated Increase of Labile Iron Pool Following Simulated Ischemia Causes Lipid Peroxidation During the Early Phase of Reperfusion

Free radical research(2022)

引用 0|浏览3
暂无评分
摘要
Heart ischemia/reperfusion (I/R) injury is related to iron content. However, the occurrence and mechanism of changes in labile iron pool (LIP) during I/R is debatable. Moreover, the identity of the iron form dominant in LIP during I/R is unclear. Herein, we measured changes of LIP during simulated ischemia (SI) and reperfusion (SR), in which ischemia was simulated in vitro with lactic acidosis and hypoxia. Total LIP did not change in lactic acidosis, whereas LIP, especially Fe3+, increased in hypoxia. Under SI, accompanied by hypoxia with acidosis, both Fe2+ and Fe3+ were significantly increased. Increased total LIP was maintained at 1 h post-SR. However, the Fe2+ and Fe3+ portion was changed. The increased Fe2+ was decreased, and conversely the Fe3+ was increased. BODIPY oxidized signal increased and through the time-course these changes correlated with blebbing of cell membrane and SR-induced LDH release. These data suggested lipid peroxidation occurred via Fenton's reaction. The experiments using bafilomycin A1 and zinc protoporphyrin suggested no role of ferritinophagy or heme oxidation in the increase of LIP during SI. The extracellular source, transferrin assessed using serum transferrin bound iron (TBI) saturation showed that the depletion of TBI reduced SR-induced cell damages and additive saturation of TBI accelerated SR-induced lipid peroxidation. Furthermore, Apo-Tf dramatically blocked the increase of LIP and SR-induced damages. In conclusion, Tf-mediated iron induces the increase of LIP during SI, and it causes Fenton reaction-mediated lipid peroxidation during the early phase of SR.
更多
查看译文
关键词
Ischemia-reperfusion injury,labile iron pool,Fenton reaction,ferroptosis,lipid peroxidation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要