谷歌浏览器插件
订阅小程序
在清言上使用

New Inspiration of 1,3,4-Oxadiazole Agrochemical Candidates: Manipulation of a Type III Secretion System-Induced Bacterial Starvation Mechanism to Prevent Plant Bacterial Diseases.

Journal of agricultural and food chemistry(2023)

引用 6|浏览10
暂无评分
摘要
Discovering new anti-virulent agents to control plant bacterial diseases by preventing bacterial pathogenesis/pathogenicity rather than affecting bacterial growth is a sensible strategy. However, the effects of compound-manipulated bacterial virulence factors on host response are still not clear. In this work, 35 new 1,3,4-oxadiazole derivatives were synthesized and systematically evaluated for their anti-phytopathogenic activities. Bioassay results revealed that compound C7 possessed outstanding antibacterial activity in vitro (half-maximal effective concentration: 0.80 μg/mL) against Xanthomonas oryzae pv. oryzae (Xoo) and acceptable bioactivity in vivo toward rice bacterial leaf blight. Furthermore, virulence factor-related biochemical assays showed that C7 was a promising anti-virulent agent. Interestingly, C7 could indirectly reduce the inducible expression of host SWEET genes and thereby alleviate nutrient supply in the infection process of phytopathogenic bacteria. Our results highlight the potential of 1,3,4-oxadiazole-based agrochemicals for manipulating type III secretion system-induced phytopathogenic bacteria starvation mechanisms to prevent plant bacterial diseases.
更多
查看译文
关键词
oxadiazoles,anti-virulent agent,T3SS,bacterial leaf blight,SWEET genes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要