The 2022 high-energy outburst and radio disappearing act of the magnetar 1E 1547.0-5408

arxiv(2023)

引用 3|浏览47
暂无评分
摘要
We report the radio and high-energy properties of a new outburst from the radio-loud magnetar 1E 1547.0$-$5408. Following the detection of a short burst from the source with Swift-BAT on 2022 April 7, observations by NICER detected an increased flux peaking at $(6.0 \pm 0.4) \times 10^{-11}$ erg s$^{-1}$ cm$^{-2}$ in the soft X-ray band, falling to the baseline level of $1.7\times10^{-11}$ erg s$^{-1}$ cm$^{-2}$ over a 17-day period. Joint spectroscopic measurements by NICER and NuSTAR indicated no change in the hard non-thermal tail despite the prominent increase in soft X-rays. Observations at radio wavelengths with Murriyang, the 64-m Parkes radio telescope, revealed that the persistent radio emission from the magnetar disappeared at least 22 days prior to the initial Swift-BAT detection and was re-detected two weeks later. Such behavior is unprecedented in a radio-loud magnetar, and may point to an unnoticed slow rise in the high-energy activity prior to the detected short-bursts. Finally, our combined radio and X-ray timing revealed the outburst coincided with a spin-up glitch, where the spin-frequency and spin-down rate increased by $0.2 \pm 0.1$ $\mu$Hz and $(-2.4 \pm 0.1) \times 10^{-12}$ s$^{-2}$ respectively. A linear increase in spin-down rate of $(-2.0 \pm 0.1) \times 10^{-19}$ s$^{-3}$ was also observed over 147 d of post-outburst timing. Our results suggest that the outburst may have been associated with a reconfiguration of the quasi-polar field lines, likely signalling a changing twist, accompanied by spatially broader heating of the surface and a brief quenching of the radio signal, yet without any measurable impact on the hard X-ray properties.
更多
查看译文
关键词
Magnetars,Pulsars,Radio pulsars,High energy astrophysics,Neutron stars
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要