How Brazilian Schoolchildren Identify, Classify, and Label Foods and Beverages—A Card Sorting Methodology
International journal of environmental research and public health(2023)SCI 3区
Univ Fed Santa Catarina | Univ Debrecen
Abstract
This study examined how Brazilian schoolchildren identified, classified, and labeled foods and beverages. Semi-structured interviews were conducted with 133 schoolchildren aged 7 to 10 years old from a public school located in southern Brazil in 2015. A set of cards with pictures of 32 food and beverage items from the web-based Food Intake and Physical Activity of Schoolchildren tool (Web-CAAFE) were used. Participants identified each item, formed groups for them based on similarity, and assigned labels for those groups. Student’s t-tests and analysis of variance (ANOVA) tests were used to verify the mean difference between the groups of items. K-means cluster analysis was applied to identify similar clusters. Schoolchildren made an average of 9.1 piles of foods and beverages that they thought were similar (±2.4) with 3.0 cards (±1.8) each. Five groups were identified: meats, snacks and pasta, sweets, milk and dairy products, and fruits and vegetables. The most frequently used nomenclature for labeling groups was taxonomic-professional (47.4%), followed by the specific food item name (16.4%), do not know/not sure (13.3%), and evaluative (health perception) (8.8%). The taxonomic-professional category could be applied to promote improvements in the identification process of food and beverage items by children in self-reported computerized dietary questionnaires.
MoreTranslated text
Key words
food categorization,schoolchildren,online questionnaire,cluster analysis,semi-structured interviews
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2009
被引用58 | 浏览
2009
被引用30 | 浏览
2014
被引用46 | 浏览
2014
被引用29 | 浏览
2014
被引用48 | 浏览
2020
被引用8 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper