谷歌浏览器插件
订阅小程序
在清言上使用

Porous Electrospun Films with Reversible Photoresponsive Microenvironmental Humidity Regulation: A Controllable Hydrogen-Bonding Synergistic Effect Exhibited by Acrylic Acid Segments.

ACS applied materials & interfaces(2023)

引用 2|浏览9
暂无评分
摘要
Suitable relative humidity is essential for the preservation of cultural relics, food storage, and so on. A special material that can regulate the relative humidity in the microenvironment is particularly important. In this work, several innovative electrospun films with reversible photoresponsive wettability and the ability to regulate microenvironmental relative humidity were prepared. The spiropyran unit of the synthesized copolymer played the most important role in humidity regulation due to its reversible transition between a nonpolar ring-closed state and a polar ring-opened state induced by alternating ultraviolet/visible illumination. More interestingly, the introduction of acrylic acid segments exhibited a controllable hydrogen bond synergistic effect for increasing the range of humidity regulation. The color change and the reversible change ranges of wettability and microenvironmental relative humidity under ultraviolet/visible irradiation are all closely related to the number of acrylic acid segments. Cassie theory, density functional theory (DFT), and interaction region indicator (IRI) analysis were used to characterize this phenomenon. Electrospinning is a promising method to achieve large-scale production that can put such material into practical applications.
更多
查看译文
关键词
electrospinning,humidity regulation,photoresponsive,spiropyran,synergistic effect
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要