High-performance LaNi0.6Fe0.4O3-δ-La0.45Ce0.55O2-δ nanoparticles co-loaded oxygen electrode for solid oxide steam electrolysis

Ceramics International(2023)

引用 5|浏览9
暂无评分
摘要
Hydrogen production through solid oxide electrolysis cells (SOECs) driven by renewable energy has attracted a lot of attention. Nevertheless, the poor performance of the oxygen electrode is a bottleneck in the implementation of SOECs. This work reports a high-performance LaNi0.6Fe0.4O3-δ-La0.45Ce0.55O2-δ (LNF-LDC) nanoparticles co-loaded (La0.8Sr0.2)0.9MnO3-δ-Y0.15Zr0.85O2-δ (LSM-YSZ) oxygen electrode. Firstly, the co-synthesized LNF-LDC nano-composite is characterized by XRD, SEM, H2-TPR and O2-TPD techniques. Compared with individually synthesized LaNi0.6Fe0.4O3-δ (LNF), the co-synthesized LNF-LDC nanoparticles have a larger amount of oxygen vacancy and higher oxygen mobility due to a strong synergistic effect. Secondly, the LNF-LDC nanoparticles co-loaded oxygen electrode exhibits a higher electrochemical performance than the single LNF loaded LSM-YSZ electrode. Under 800 °C and 50% A.H., the cell with LSM-YSZ@LNF-LDC-4 μL delivers −1.18 A cm−2 at 1.3 V, which is 2.03 times higher than the cell with LSM-YSZ@LNF-4 μL. Therefore, co-loading LNF-LDC is a promising method to develop a highly efficient oxygen electrode for solid oxide steam electrolysis.
更多
查看译文
关键词
Hydrogen production,Solid oxide electrolysis cell,Nanostructure,Co-loaded oxygen electrode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要