Effectively Learning Moiré QR Code Decryption from Simulated Data.
INFOCOM(2023)
Department of Computer Science and Engineering | School of Computing Science | Industrial Engineering and Operations Research Department
Abstract
Moiré QR Code is a secure encrypted QR code system that can protect the user’s QR code displayed on the screen from being accessed by attackers. However, conventional decryption methods based on image processing techniques suffer from intensive computation and significant decryption latency in practical mobile applications. In this work, we propose a deep learning-based Moiré QR code decryption framework and achieve an excellent decryption performance. Considering the sensitivity of the Moiré phenomenon, collecting training data in the real world is extremely labor and material intensive. To overcome this issue, we develop a physical screen-imaging Moiré simulation methodology to generate a synthetic dataset that covers the entire Moiré-visible area. Extensive experiments show that the proposed decryption network can achieve a low decryption latency (0.02 seconds) and a high decryption rate (98.8%), compared with the previous decryption method with decryption latency (5.4 seconds) and decryption rate (98.6%).
MoreTranslated text
Key words
Secure QR code,Moiré pattern,Image-to-image translation,Simulated data
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
1997
被引用78 | 浏览
1998
被引用85 | 浏览
2017
被引用34 | 浏览
2017
被引用34 | 浏览
Mobile Computing and Networking 2019
被引用2 | 浏览
2021
被引用86 | 浏览
2023
被引用105 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest