Chrome Extension
WeChat Mini Program
Use on ChatGLM

Identification of Probable Inhibitors for the DNA Polymerase of the Monkeypox Virus Through the Virtual Screening Approach

International journal of biological macromolecules(2023)

Cited 4|Views9
No score
Abstract
Given the paucity of antiviral treatments for monkeypox disease, caused by the Monkeypox virus (MPXV), there is a pressing need for the development/identification of new drugs to treat the infection. MPXV possesses a linear dsDNA genome that is replicated by a DNA replication complex of which DNA polymerase (DPol) forms an important component. Owing to the importance of DPol in the viral life cycle, identifying/designing small molecules abolishing its function could yield new antivirals. In this study, we first used the AlphaFold artificial intelligence program to model the 3D structure of the MPXV DPol; like the fold of DPol from other organisms, the MPXV DPol structure has the characteristic exonuclease, thumb, palm, and fingers sub-domains arrangement. Subsequently, we have identified several inhibitors through virtual screening of ZINC and antiviral libraries. Molecules with phenyl scaffold along with alanine-based and tetrazole-based molecules showed the best docking score of-8 to-10 kcal/mol. These molecules bind in the palm and fingers sub-domains interface region, which partially overlaps with the DNA binding path. The delineation of DPol/inhibitor interactions showed that majorly active site residues ASP549, ASP753, TYR550, ASN551, SER552, and ASN665 interact with the in-hibitors. These compounds exhibit good Absorption, Distribution, Metabolism and Excretion properties.
More
Translated text
Key words
Monkeypox virus,DNA polymerase structure,Virtual screening,Molecular docking,Structure-based screening
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined