谷歌浏览器插件
订阅小程序
在清言上使用

Flexible Electrospun PVDF Piezoelectric Nanogenerators with Electrospray-Deposited Graphene Electrodes

Journal of Electronic Materials(2023)

引用 2|浏览12
暂无评分
摘要
Today, there is a great demand for the development of portable, lightweight, flexible, and stable devices that produce and store energy to provide the power that wearable electronics and smart textile materials need. For this purpose, in recent years, researchers have focused on the development of nanofiber-based nanogenerators that have high surface areas thanks to their nanofibrous structures. Therefore, this study presents the development of piezoelectric nanogenerators made of poly(vinylidene fluoride) (PVDF) nanofibers and graphene-based flexible electrodes via electrospray deposition (ESD) technique using electrospinning devices. First, graphene oxide (GO) was electrosprayed onto the PVDF-nanofiber surface, then, the coated GO layer was reduced by chemical treatment to obtain reduced-GO (rGO) and to increase the electrical conductivity. With the ESD technique, it has been observed that graphene oxide nanosheets successfully wrapped on the nanofibers without agglomerating, and this effect was further enhanced by the reduction process. The effect of different thicknesses of graphene electrodes on the efficiency of nanogenerators was investigated. As a result, a maximum peak-to-peak voltage of 1.00 V was produced by a rGO-sprayed nanofiber-based nanogenerator, while 0.688 V was obtained with pure PVDF nanofibers. Also, "voltage-per-gram" analysis showed that the output voltage was directly related to the electrode morphology and thickness. Graphical Abstract
更多
查看译文
关键词
Electrospray,graphene,nanofiber,poly(vinylidene fluoride) (PVDF),piezoelectric nanogenerator
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要