谷歌浏览器插件
订阅小程序
在清言上使用

Self-Assembled Biomolecule Interlayer for Enhanced Efficiency and Stability of Inverted Organic Solar Cells

ACS materials letters(2022)

引用 3|浏览11
暂无评分
摘要
Interlayers play a vital role in achieving high efficiency and stability of organic solar cells (OSCs). Zinc oxide (ZnO) has been widely used as an electron transport layer (ETL) in inverted OSCs; however, its high structural defects and intrinsic photocatalytic nature toward nonfullerene acceptors limit its applications in OSCs. Herein, a low-cost, environmentally-friendly biomolecule, potassium aspartic acid (PAA), is introduced as the interlayer on top of the ZnO ETL. Through experimental results and theoretical calculations, we find PAA not only can tune energy alignments and passivate oxygen vacancy defects and zinc interstitial dangling bonds but also can promote the pi-pi stacking strength of the active layer, leading to enhanced charge collection and photovoltaic performance in both IT series (e.g., PM6:IT-4F) and Y series (e.g., PM6:BTP-4F-C5-16) OSCs. Moreover, benefiting from the reduced surface defects of ZnO, OSCs based upon the ZnO/PAA ETL exhibit superior stabilities under continuous operation as well as UV-light irradiation, leading to an improved T80 lifetime of around 4 times compared to OSCs fabricated without the PAA interlayer. This work provides a universal solution to fabricate efficient and stable inverted OSCs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要