Enhanced-rate Iterative Beamformers for Active IRS-assisted Wireless Communications
IEEE Wireless Communications Letters(2023)
Abstract
Compared to passive intelligent reflecting surface (IRS), active IRS is viewed as a more efficient promising technique to combat the double-fading impact in IRS-aided wireless network. In this letter, in order to boost the achievable rate of user in such a wireless network, three enhanced-rate iterative beamforming methods are proposed by designing the amplifying factors and the corresponding phases at active IRS. The first method, maximizing the simplified signal-to-noise ratio (Max-SSNR) is designed by omitting the cross-term in the definition of rate. Using the Rayleigh-Ritz (RR) theorem, Max-SSNR-RR is proposed to iteratively optimize the norm of beamforming vector and its associated normalized vector. In addition, generalized maximum ratio reflection (GMRR) is presented with a closed-form expression, which is motivated by the maximum ratio combining. To further improve rate, maximizing SNR (Max-SNR) is designed by fractional programming (FP), which is called Max-SNR-FP. Simulation results show that the proposed three methods make an obvious rate enhancement over Max-reflecting signal-to-noise ratio (Max-RSNR), maximum ratio reflection (MRR), selective ratio reflecting (SRR), equal gain reflection (EGR) and passive IRS, and are in increasing order of rate performance as follows: Max-SSNR-RR, GMRR, and Max-SNR-FP.
MoreTranslated text
Key words
Active intelligent reflecting surface,double-fading,achievable rate,wireless networks
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined